Toda Lattice Hierarchy and Zamolodchikov’s Conjecture
نویسنده
چکیده
where the domain of integration for the operator is (0,∞). The quantity e(p) does not depend on tn’s. It should be remarked that our tn corresponds to tn/2 of refs.[1, 2]. Independently, Bernard and LeClair showed that φ(t) solves the shG equation[3]. Quite recently, Tracy and Widom proved that above φ(t) satisfies both the mKdV hierarchy and the shG hierarchy[2]. Their proof is based on the fact that the quantity φ(t) is expressed in terms of Fredholm determinant. In this letter, we will show that the Fredholm determinant D(λ; t) is nothing but a special case of τ -function for the Toda lattice hierarchy[4]. As in the appendix D of ref.[3], we start with finite domain of integration (0, ν) for ν finite, rather than infinite domain (0,∞). We then consider the quantity,
منابع مشابه
Integrable Structures in String Field Theory
We give a simple proof that the Neumann coefficients of surface states in Witten’s SFT satisfy the Hirota equations for dispersionless KP hierarchy. In a similar way we show that the Neumann coefficients for the three string vertex in the same theory obey the Hirota equations of the dispersionless Toda Lattice hierarchy. We conjecture that the full (dispersive) Toda Lattice hierachy and, even m...
متن کاملToda Lattice Realization of Integrable Hierarchies
We present a new realization of scalar integrable hierarchies in terms of the Toda lattice hierarchy. In other words, we show on a large number of examples that an integrable hierarchy, defined by a pseudodifferential Lax operator, can be embedded in the Toda lattice hierarchy. Such a realization in terms the Toda lattice hierarchy seems to be as general as the Drinfeld–Sokolov realization.
متن کاملsupersymmetric Toda lattice hierarchy in N = ( 2 | 2 ) superspace
An N=(2|2) superfield formulation of the N=(2|2) supersymmetric Toda lattice hierarchy is proposed, and its five real forms are presented. 1. Introduction. Recently the N=(1|1) supersymmetric generalization of the Darboux transformation was proposed in [1], and an infinite class of bosonic and fermionic solutions of its symmetry equation was constructed in [1, 2]. These solutions generate boson...
متن کاملSome Classes of Solutions to the Toda Lattice Hierarchy
We apply an analogue of the Zakharov-Shabat dressing method to obtain infinite matrix solutions to the Toda lattice hierarchy. Using an operator transformation we convert some of these into solutions in terms of integral operators and Fredholm determinants. Others are converted into a class of operator solutions to the l-periodic Toda hierarchy.
متن کاملTau Function and Hirota Bilinear Equations for the Extended Bigraded Toda Hierarchy
The Toda lattice equation is a nonlinear evolutionary differential-difference equation introduced by Toda [1] describing an infinite system of masses on a line that interact through an exponential force which is used to explain the well-known FermiPasta-Ulam phenomenon. It was soon realized that this equation is completely integrable, i.e. admits infinite conserved quantities. It has important ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 1995